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A computer implementation of the direct configuration interaction method 
formulated within the symmetric group approach is discussed. The formula- 
tion allows for an open-shell as well as for a multiconfigurational reference 
state. The number of all necessary formulas, derived by a computer for each 
integral type rather than for the individual integrals, is lower than in the 
currently existing techniques, including the unitary group approach. The 
logical structure of a general program for singly and doubly excited configura- 
tions is outlined. The efficiency of the symmetric group approach is demon- 
strated on a recently developed program, restricted to one reference state 
only. 
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1. Introduction 

The confguration interaction (CI) method used for calculations of the many- 
electron correlated wave functions, unlike many other methods can, in principle, 
yield exact results [1]. The CI space is taken as the antisymmetric part of the 
N-fold tensorial product If, @N of the one-electron space Vn, spanned by the set 
of orbitals {q~k, k = 1 , 2 , . . . ,  n}. The solution of the Schr6dinger equation, 
restricted to that space V, may be represented as a linear combination of 
N- electron basis functions (configuration functions, CF): 
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A few important functions ~br,0 (termed the reference or root CFs), usually 
obtained from MC-SCF calculations, give the dominant part of the correlation 
energy by taking care of all the degeneracy and near-degeneracy effects. The 
second part of the expansion takes into account the dynamical correlation of the 
motion of the electrons. The length of the CI expansion may be reduced by 
restricting the CI space to configurations with proper spin and space symmetry 
properties [2]. The concept of the first order interacting space [3-8] enables 
further reduction to the expansion in all single and double replacements from the 
reference configurations. As was demonstrated [9-14] this kind of model multi- 
reference expansion (MC-CI expansion) gives very accurate results. However, it 
becomes quickly very long, causing in the conventional CI approach, when the 
Hamiltonian matrix is constructed and processed, severe problems with computer 
storage and timings. 

A straightforward way out of this problem is offered by the direct CI method [15, 
16], developed extensively in many variants in recent years [17-31]. Despite of 
the great effort put into generalizations of this method only very recently it has 
been formulated in a form computationally well fitted for open shell MC-CI 
expansions. The generalization was made possible by turning into account the fact 
[32] that the CI space Vn@ N is the carrier space for representations of the 
permutation group SN (permutations of the electrons) on the one hand and of the 
unitary group U(n) (unitary transformations among the orbitals) on the other. 
Although the rapid development of the theory [33-40] and applications [20, 21, 
31, 41] of the unitary group approach (UGA) overshadowed the development of 
the theory [42-53] and applications [54-56] of the symmetric group approach 
(SGA) one may argue that the SGA offers several advantages over UGA: the 
theory is simpler, one does not have to deal with spin couplings explicitly, the basis 
of the spin functions is very flexible, efficient treatment of spin-dependent 
operators is possible [48], the formalism may be used in conventional as well as in 
the direct CI approach [56]. 

Here we present an application of the SGA to the direct CI method. The approach 
suggested here has advantages of both theloop-driven implementation of UGA, 
by Brooks and Schaefer [31 ], and the integral-driven implementation by Siegbahn 
[20, 21] - the loops rather than individual integrals are processed and the formula 
tape is very short. The structure of the internal space (of orbitals occupied in at 
least one of the reference configurations) may be exploited fully during calculation 
of pertinent formulas and coupling coefficients. In SGA the number of coefficients 
which should be calculated is in many cases much lower than in the other 
approaches. This is a rather unimportant advantage 1 since in most practical cases 
the time used for their calculation by U G A  programs is already quite short [21, 
31]. 

1 Consider, however, the case of full CI calculations for 4 valence electrons. The number of 
representation matrices is 4! = 24 and their maximal dimension is 3 (for triplets), so the number of 
coefficients cannot exceed 24 �9 3 �9 3 = 216 elements (in fact the relationships among the matrices allow 
us to reduce that number to 15). The number of coupling coefficients which should be calculated in the 
UGA depends on the size of the orbital basis and can reach several millions [20]. 
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The program, developed along the lines presented in that paper, has a very similar 
structure to the original direct CI program of Roos [15 ] and to the recent program 
of Siegbahn [21]. Although at the present stage it is not so general as U G A  
programs - covers the cases of single and double replacements from one reference 
configuration with no more than two open shel ls-  further generalization for 
complete first-order active space is straightforward. The graphical form of SGA 
[53] presents a more efficient alternative than the present approach if configura- 
tions with more than two replacements should be included. 

2. Symmetric Group Approach to the Direct Configuration Interaction 
Method 

Only a brief summary is given here; for full presentation of the theory the reader is 
refered elsewhere [16, 43, 47, 53, 56]. 

Since at most two-particle interactions appear in the Hamiltonian H, it may be 
represented in the CI space in the following way [33]: 

o.  1 
H = E (q)E,i +~ E (i]lkl)(E~jEkt - 6jkE~t) (2) 

i,] i , j ,k , l  

where (ij) and (i]lkl) are one and two-electron integrals and Eij are the generators 
of the unitary group U(n) .  

The iterative methods, used for partial diagonalization of very large matrices [1, 
17, 19, 57] make use of the Hamiltonian matrix H to find in each iteration the 
product vector: 

o'~, = E H , , C ( 2  ~, H ~  = (,~. IHI0.) (3) 
i t  

where C ~ is the approximate eigenvector in the n-th iteration. This can be 
written as: 

tr~ = E  (ij) I.~i] , .~ ) -r E (ijlkl) b~ ,C~  "~ 
i,j i ,Lk , l  

where 

a~" = (~b~[Eij[t~); b~t  = l((b~lEiiEkl- 8ikEil[qbv) (5) 

are the coupling constants. 

To calculate the or vector directly from the list of integrals - this is the main idea of 
the direct CI method - one should be able to identify, for a given integral, all pairs 
of configurations/z, v, and calculate appropriate coupling constants (5). To that 
purpose let's define spin-adapted configuration: 

OA,S,M;k (r, tr) = D E e (P)P(Os, M;k (o')0~ (r)), k = 1 . . . . .  A (6) 
P 

where P is a permutation operator acting on spatial and spin coordinates r, ~r of 
electrons, e (P) is its parity, D is normalization constant, S and M refer to the 
eigenvalues of S 2 and S~ operators of the total spin, and f~ is the number of 



302 W. Duch 

independent spin functions Os, M;k. The orbital part O~ (r) has the form: 

N 

0x(r) = l-I ~oxi(ri), ~oxiE VN, 
i = l  

AI<A2<"  " "<As: As+l= As+2 <"  " " <AN-1 =AN 
(7) 

where A is abbreviation for the set {Ai, i = 1 . . . . .  N} and s denotes the number of 
singly occupied orbitals in A. When evaluating a matrix element between two 
configurations, the integration over spin and orbital variables is performed 
separately and in the case of spin-free operators (spin-dependent case is described 
in [48]) the integrals over spin variables give: 

(OS, M;k IPIOs, M;,) = e (P) U~(P)kt (8) 

where U~(P) is an irreducible representation matrix of the symmetric group SN. 
This is one of the principal features responsible for high efficiency of SGA: all the 
spin coupling properties are hidden in the representation matrices and we have a 
freedom of choice of the representation. In fact we can treat all fA functions (6) as 
one function. Moreover, we can very easily keep strictly to the first order 

~ p  interacting space [29-31] deleting all rows and columns of __Us( ) matrices 
corresponding to spin functions which give zero matrix elements with the 
reference state. 

The ordering of the orbitals in Eq. (7) allows us to express all the matrix elements 
using permutations among singly occupied orbitals only [47]. The coupling 
constants may now be written in a general form: 

a.~[A,,~U~(Po)] r (9) 

where [U] rJ~ is the rectangular part of the matrix _Uconsisting of its first f,, rows 
and f~ columns, P0 is the permutation "chosen" by the generators in Eq. (5) 
(integral over space variables is different from zero only for one permutation P0 
acting on indices of singly occupied orbitals in (7)), a,~ are simple constants + 1, 
+~/~ or 2 and A_A_,v is usually a unit matrix except for a few cases when it is a unit 
matrix plus a representation matrix for a single transposition. The value of a,~ 
does not depend on the actual form of /x  and u but only on the occupation 
numbers of orbitals corresponding to the integral indices i, ], k, l in the both 
configurations. Only a few different sets of occupation numbers are allowed - one 
can find them using the method presented in [56] or considering all possible types 
of generators (5). All the sets of the occupation numbers except for the trivial case 
of diagonal terms, are listed in Table 1. 

For each case a number of different distributions of the occupation numbers is 
possible [56]. In order to obtain all the nonequivalent distributions one should 
perform Pj  permutations, given in the third column, on columns of both/x and u 
occupation numbers. In the last column values of a ~  are given. The P0 permu- 
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Table 1. Values of a.~ coefficients and A_.~ matrices for allowed occupation numbers of the orbitals 
involved in the integral. To obtain all nonequivalent distributions of the occupation numbers P~ 
permutations should be performed on the columns of the orbital occupances in/z and u configuration 

Occupational numbers 
NO. n~ n} ~ n~ n~ n7 n7 n~ ny Pj- a . .  

(ill kl) integrals. Four orbitals different. A.~ = I except case No. 4, Pj = (23), (132), (234), (1342) when 
A. . ,  = -(I+U~s((liIj))) where Ii is the position of r in/x. 

1 1 0 1 0 0 1 0 1 
2 1 0 1 1 0 1 0 2 

/, (12), (23) 1 
/, (12), (14), (23), (24), (34), (124), (142), 42 
(234), (243), (12)(34), (14)(23) 

3 1 1 1 1 0 2 0 2 /, (12), (34), (12)(34), (23), (14) 2 
4 1 0 1 2 0 1 2 1 /, (12), (13), (23), (24), (123), (132), -1 

(134), (234), (13)(24), (1324), (1342) 
5 1 2 1 1 2 1 2 0 as in case No. 2 -x/2 
6 1 2 1 2 2 1 2 1 as in case No. 1 1 

(iktkj) integrals Three orbitals different 

7 1 2 0 0 1 2 I, (12) -1 
8 1 1 0 0 0 2 I x/2 
9 1 1 2 2 2 0 I -x/~ 

No. 10: (i]li]) integrals, No. 11-13: (i]) integrals 

Two orbitals different 

10 0 2 2 0 I 1 
11 1 0 0 1 I 1 
12 2 1 1 2 I -1 
13 1 1 0 2 I, (12) x/2 

(iilH) integrals: as in cases No. 12-13. 
(ijlkk) integrals: as in cases No. 11-13 except that a.~ should be replaced by n~a..,. 
(iktkj) integrals: as in cases No. 11-13 except that a.~ should be replaced by -a.~ if nk = 2 and 
A ~  --- - ( I  +_~s((/flk))) in the case No. 12, nk = 1. 

ta t ion  may be given in the explicit form as a p roduc t  of cycles [51, 53, 56] or may  
be found  by p roper  order ing  of the orbi tal  indices in ~. 

3.  A G e n e r a l  S tra tegy  

As it was po in ted  out  by  S iegbahn  [21], it is not  enough  to calculate quickly all the 

coupl ing constants ,  bu t  one  should also store and  retr ieve them efficiently. W e  
shall now presen t  a genera l  s trategy of the symmetr ic  group approach  to the direct  

CI  m e t h o d  in case of single and  double  rep lacements  out  of a genera l  mul t i -  

reference  state. 

Two distinct steps may  be dis t inguished:  at first all necessary formulas  and  
coupl ing cons tants  are found  and  recorded on  the external  file, to be  processed in 
the second part .  In  contras t  to the " fo rmula  t ape"  t echn ique  [27-31]  the formulas  
are der ived not  for each integral  separately,  bu t  for a small  n u m b e r  of the integral  
types, i.e. for all the integrals  with the same occupances  of the orbi tals  involved 

(compare  [29, 30]). 
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We introduce the symbol ~l<bell,,L~ for the matrix element (r where 
configuration be is defined by excitations from the reference configuration a 1 and v 
from az. Two separate cases are possible: the root  configurations a 1 and az are the 
same, a l  = rez, or they are different. In the first case for a given integral type we 
shall find all possible pairs of configurations be, v at most doubly excited relatively 
to ot~, such that ,1(/~11~>o~ contains integrals of this type. We shall use the method 
presented in [56] which may be summarized as follows: in the pair of interacting 
configurations the actual occupances of the orbitals involved in the integral may 
take only one of the values listed in Table 1. Comparing these allowed occupances 
with the occupation numbers of the orbitals in the reference configuration re~ we 
can easily find what excitations should be performed to obtain the allowed 
occupances. By systematic inspection of the rows of Table 1, we shall find all 
possible types of configuration pairs, given in the form of excitations f rom/ to  
orbitals involved in the integral and f rom/ to  some additional orbitals appearing in 
both configurations. For example, for the integral (abli]), where ~a, ~Pb are 
virtual and r ~0j are doubly occupied in re 1 one of possible pairs of configurations 
is ~,~(bellv),~,=,~(ki.->bcllk/->acL. The indices k and c do not appear in the 
integral and refer to doubly occupied and virtual orbitals respectively. The 
contributions to Or vector may be written in this case as: 

�9 . ~v (n) 
A O r ( k i ~ b c ) a  i = (ab[tI)babOC(ki..,ac)al (10) 

To find all the contributions from (ab lij) integral we should make a loop over k 
and c indices (referred to as the loop indices) and repeat  the procedure for all 
other types of be, v pairs. 

Now let us consider the contributions from the elements ~l(bellv)~l where re~ is a 
reference configuration different than re~. These elements may be expressed as: 

~<bell~>~, = ~ re, ~ a~>~, = ~,<bell~'>~ (11) 

where (rei ''> re1) denotes an ai-fold excitation of re~ which has to be performed in 
order  to obtain rex. If 17'---2, fi -<2, i.e. the level of excitation of be and v is not 
greater than 2 the element (11) was already taken into account when all excita- 
tions from a ~ were considered. Therefore  it is enough to consider only the cases of 
17'> 2 and t7 < 2, fi -< 2. Using the same method as before we may find all the 
configuration pairs be, v' defined relatively to a l ,  for which fi -<2 and 2 <  17'_< 
~j + 2. Then, by inspection of the occupation numbers we check whether the 
resulting configuration v is not more than doubly excited relatively to rei - if it is 
not the pair be, v is accepted. We should also include the elements ,~x(bellv'),~ = 
,~(v'llbe)~, ~ for which 12 > 2 ,  17'---2; this is done by reversing the role of be and v' 
configurations (v' is taken as be and be is taken as v'). In consequence it may happen 
that the number of singly occupied orbitals in be is lower than in v (Table 1, cases 
No. 2, 3, 5, 8, 9, 13) - then the P0 permutation should be transposed and act on v. 

In the case of a pair of configurations defined relatively to an arbitrary pair of Cek, 
rel reference configurations the double-level indexing scheme [16, 19] may be 
applied to delete the redundant  pairs. The position of a given doubly excited 
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configuration in the configuration list is calculated from the following formula: 

Address (if ~ ab ),~, = N ( N I ( N 2 ( i )  + j ) +  N3(a)+ b + N,~)  (12) 

where N1, N2, N3 are short auxiliary vectors and N~ k is the starting position of the 
configuration ak in the index vector N. 

The index vector contains the address of the first entry for f ,  coefficients 
C ,  = C(ij-.,,b)~ k. The address of a configuration which has to be deleted because of 
redundancy or because of symmetry restrictions is equal zero (compare [16]). 

Now let us consider the dependence of the couphng constants a,-i, "~ �9 ~'~ b ijkl on the i, ], 
k, l orbital indices and on/z, u configurations. The values of a,~ are uniquely 
determined by the set of the occupation numbers from which /z and u were 
derived (a row in Table 1) while A~,~ (if A,~ # I) and P0 depend only on the 
positions of these orbitals which are singly occupied in the configurations/z and u. 
In the product (7) the orbitals are placed in order of their growing indices: for a 
general doubly excited configuration Ix = ( i j ~  ab ), i <-j, a <-b the order of the 
singly occupied orbitals can be changed only if the inequalities between i, j and a, b 
indices change, or if the indices in the excitation correspond to singly occupied 
orbitals. Therefore the ranges of the indices for which the coupling constants have 
the same value may be found easily and the structure of the internal space may be 
fully exploited. Moreover, many Po permutations are the same for different ranges 
of the indices and for many pairs of configurations. The matrices corresponding to 
these permutations should be stored only once and used for many different types 
of matrix elements�9 

The contributions from the external space (the space of the orbitals absent in all 
the reference configurations) is particularly simple - because the indices of the 
external orbitals are the greatest these orbitals are always placed at the positions s 
and s - 1 in the product (7) (for no more than doubly excited configurations). In 
consequence P0 is factorized to a product PePs, where Pe is I or ( s -  1, s) 
transposition, depending on the order of external orbitals in the configuration pair 
and Pi is the ordering permutation for Pe = L In standard representations the 
matrices corresponding to Pe permutation are diagonal with + 1 elements [43, 5 8]. 
In particular it is easy to show that when all the integral indices correspond to 
orbitals from the external space P~ is always identity. The coupling constants are 
then +1 or x/2 (compare [21]). 

For every type of ~ and t, configurations we must store the value of a , ,  the 
dimensions of the configurations (f,, f ,  in (9)), and information about the loop 
structure (i.e. what kind of the loop indices appear in the configuration) and the 
pointers to the array of [U~(P0)] rJ- matrices for every region in which P0 is fixed. 
Some additional symmetries of the integral indices may be used to minimize the 
number of formulas derived. For example integrals (ij]kl), (iklfl), and (i l l jk) may 
be treated simultaneously. 

To illustrate the method presented let us consider the integral (nm lij), where i,/' 
are the indices of a closed-shell orbital and the two reference configurations o~, a2 
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differ in one closed shell orbital: (al ~ o~2) = (mm ~ nn). The same example was 
considered also by Roos and Siegbahn [19]. The integral, relatively to a l ,  is of 0, 2, 
2, 2 type. The excitation (a~ ~ a2) is composed of two one-electron excitations, 
therefore fi --< 2, 2 < ~ -< 4. It is easy to notice that the condition fi - 2 may be 
fulfilled only in cases No. 3-6 of Table 1. In order to find the first type of 
interacting configurations discussed in [19] let us take the set of occupation 
numbers (1, 0, 1, 2), (0, 1, 2, 1) (case No. 4, P j  = I). Subtracting these occupation 
numbers from the occupation numbers in a~ we get the differences 1, - 2 ,  - 1 ,  0 
and 0, - 1 ,  0, - 1 .  Hence fi -> 3 and 9' - 2. Reversing the role of/z and v' we obtain 
i x=(m]+xy) ,  1, where x, y are the loop indices. To find u we must add the 
excitation ( a z + a l ) = ( n n + m m )  to v', i.e. substract 2 from the occupation 
number of q~, and add 2 to the occupation number of r As the result, the 
differences are - 1 ,  0, - 1 ,  0. Therefore v = (ni + xy) and the configuration pair is 
~1(/~ Ilv)~ 2 = ~q(m] + xyllni + xy),~2. In the same way the second type of interacting 
pairs discussed in [19] may be o b t a i n e d - t h e  pair ,~(jx+nyllix+my),,~, cor- 
responding to the case No. 6, P j  = (12) (also in this case the order of/~ and v 
should be reversed). 

Now we shall derive the coupling constants for the case of two different con- 
ventions of the ordering of orbitals. Case A, used in [56], when the excitation from 
a pair of doubles to a pair of virtuals (i/--> ab) leads to a, i, b, j order of the orbitals 
in the configuration (this case corresponds to ph-ph spin coupling scheme [24]) 
and case B, in agreement with (7) (this case corresponds to pp-hh spin coupling 
scheme [24]). If a l ,  a2 are closed she.ll configurations then using the standard 
Yamanouehi-Kotani representation matrices [43] we have: 

.l(mioxyllni+xy),~2; a~,,, = - 1 ;  A,~ = I  

Case A Case B 

j < m ,  i < n  

j > m , i > n  

]> rn, i <n -1/2 43/3],_ 1 0 
or U~o((24))=( q~ /2  1 / 2 ' "  --U~ -1 ) "  

j < m ,  i > n  

(13) 

In the case of open-shell reference configurations and x, y corresponding as 
s+4  before to the virtual orbitals the matrices Us ((hs + 1, s +2)), where s is the 

number of singles in a l  and S is the desired value of spin, should be taken instead 
of Ug((12)). 

The representation matrix for a general permutation P0 may be obtained as a 
product of matrices for transpositions. Although most of the permutations needed 
are single transpositions or unity, the computation time in this part of the program 
is spent mainly on the multiplications of the matrices. 
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The frozen-core orbitals may be easily taken into account by repartitioning the 
Hamiltonian by means of the Fock operator F = ~i  (Ji - 1/2Ki)ni,  where Ji and Ki 
are Coulomb and exchange operators and nl are the most common occupations in 
the reference states. In consequence the integrals comprising the frozen-core 
orbitals may be deleted from the list of integrals. The additional advantage of the 
repartitioning is a reduction of the number of formulas for (i][kk), (ik[k]) integrals 
and a significant simplification of the diagonal matrix elements. 

In the second part of the program the formulas and the coupling constants are 
retrieved and used for each type of integrals separately. To minimize the number 
of input/output operations the integrals should be presorted into blocks of a given 
type. Then for one iteration only one pass through the list of integrals and through 
the list of formulas and coupling constants is needed. Every loop over the orbital 
indices should be broken into regions of constant Po values and before looping 
over a given region the pair of integrals Jr, J2 appearing in the same matrix element 
is combined in one entity aiJ1U1 + a2J2U__2 where al, a2 are a,~ coefficients and U~, 
U2 are the representation matrices. 

The coding may be greatly simplified if the loops over the internal space orbitals 
are separated from the loops over the external space orbitals. The addresses of the 
internal part of the loop may then be calculated and stored during generation of 
the formulas, giving entries for the external loops. The structure of the loops used 
in actual processing of the integrals is then very simple. The formula tape 
generated in such a manner should be very compact as the internal space is usually 
rather small and the matrix of coupling coefficients may be used for a whole set of 
states in the internal space and in the external space. That approach is very similar 
to the integral-driven implementation of UGA made by Siegbahn [20, 21 ], but the 
structure of the internal space may be exploited in greater extent. Moreover, the 
matrix form of the coupling constants allows us to treat all the interactions 
between configurations with given orbital occupancy and all different spin- 
couplings simultaneously. As we shall see in the next section the efficiency of the 
program based on such approach grows with the growing dimensions of coupling 
constants matrices. 

4. The Program 

To test the efficiency of the method presented above a FORTRAN program was 
developed a for the special case of one reference configuration with no more than 
two open shells. This particularly simple case served mainly to gather experience 
for a more general program. It shows however general trends in the SGA 
approach and therefore it is reported here. 

The program is composed of two separate parts. The first part generates the 
formulas for all the integral types in sequence of their appearance in the reordered 

a All calculations were done on the ES-1032 computer (404 Kbytes of core memory available to the 
user, about 60 times slower than IBM 360/90) in the Computer Center of Nicholas Copernicus 
University. 
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integral list. For given value of spin and the number  of open shells the formulas do 
not depend on the number  of doubles and virtuals (if these numbers  are greater  
than 3 - if not, some of the cases never  appear  and the corresponding formulas do 
not have to be generated).  Therefore  the set of the formulas is un ive r sa l -  once 
generated it may be used in many  calculations. 

The frozen-core orbitals are completely removed from our considerations. They 
are all included into the matrix elements of the Fock operator ,  calculated during 
the reordering of the list of integrals. Two-electron integrals depending on the 
same orbitals are t reated simultaneously. In the integral list they are grouped 
together  and only one packed-integer  word is needed to identify them. 

To illustrate the amount  of storage needed for different cases, in Table 2 are given: 
the number  of the integral types and of the formulas, the maximum lengths of the 
vectors where the formulas and the representat ion matrices are stored, needed in 
core for one integral type, and the total lengths of these vectors. In the last two 
columns the percentage of elements of the representat ion matrices which are 
equal to zero and the running times are given. As one can see even in the most  
complex case the generation of the formulas would take a fraction of a second on a 
fast computer .  No care was taken to optimize this part  of the program. In the 
Yamanouch i -Kotan i  representation,  used in that calculations, only U~((s ,  s - 1)) 
matrices are diagonal. Considerable savings could be made  by changing to the 
Serber representat ion [43, 58], since the matrices for (12), ( 3 4 ) . . .  transpositions 
are then diagonal. Taking it into account in matrix multiplications and in storage 
one should be able to reduce the total as well as the maximum number  of the 
coupling constants several times. This should also reduce the large number  of zero 
coupling constants. The simplest way to avoid such coupling constants is to store 
only non-zero elements  of representat ion matrices. More  specific choice of 
representat ion is also worth considering [60]. 

Due  to the advantages of the matrix operat ions the running time grows much 
slower than the total number  of calculated coupling constants. The dimensions of 
the representat ion matrices grow very fast with an increase of the number  of the 
open shells. Therefore  for a large number  of the open shells both the storage 

Table 2. Comparison of different sets of formulas for cases treated by the program. N r -  number of 
integral types, NF-  number of formulas, MF and Mrs are, respectively, the maximum length of arrays 
containing formulas and matrices for one integral type, LF and Ltr are the total length of these arrays. 
The percentage of zero elements of the representation matrices is given in the next column. Time t for 
generation of each case is given in CPU seconds on ES-1032 computer 

No. of % 
open of 
shells Spin NT NF MF Mtr LF L v  zeros 

0 0 20 87 447 108 2478 384 12 4.0 
1 1 ~ 37 273 685 637 7279 3339 34 10.0 

2 0 47 502 801 639 14342 5303 24 21.4 
2 1 47 429 766 1834 1 2 9 5 2  13223 46 34.0 
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requirements and the running times will be much larger. This is inevitable in any 
approach unless we reduce the number of the spin functions keeping strictly to the 
first-order interacting space [3-8, 29-31]. For a large number of singles a direct 
determination of non-zero elements of the representation matrices [59-61], 
instead of matrix multiplications, should be the most efficient way of their 
generation. It is clear however that in any reasonable case of a large-scale 
calculations the generation of the formulas and of the coupling constants takes a 
negligible computer time compared to other steps. 

In the second part of the program the Davidson's diagonalization procedure [57] 
is performed. The diagonal elements, needed in that procedure in explict form, 
are calculated in the conventional way. Three sets of formulas are used: for singly 
and doubly excited configurations interacting with the ground state only (in the 
first iteration), interacting with the ground state and singly excited states (in the 
next few iterations), and interacting with all configurations (in the last few 
iterations). Another choice of "important" formulas for a few first iterations is 
also possible. The total time needed for diagonalization is thus greatly reduced. 

To calculate contributions to vector (4) a block of the integrals (all of the same 
type) is read into the core. If the integrals in the block are of a different type than in 
the previous one the new formula vector and the new vector with representation 
matrices are read. Then the integral indices are unpacked and the information 
about the first formula is restored from the formula vector. The loop over the 
integrals of the block in core is started and for every integral the symbolic indices 
in the configuration pairs are replaced by the actual indices of that integral. For 
each type of the pair of configurations the subroutine which determines the loop 
structure (makes loops over the loop indices) is called. The loops over the internal 
and over the external orbitals were not separated in the present program, giving 
rise to rather lengthy code. The loops are divided into a few regions in which the 
coupling constants do not change. To avoid unnecessary repetitions pairs of 
two-electron integrals Jr, J2 and coupling constants alU1, a2U2 a r e  combined in 
one matrix aiJiU_~ + a2J2 Ubefore loops in each region are started. After using up 
all the formulas a new block of the integrals is read and the process repeated. The 
organization of the program minimizes the numbers of necessary multiplications 
and logical operations. 

Test calculations on various systems (a few examples are given in Table 3) 
displayed the following features of the program: 

The input/output efficiency is very high, rising with the length of the expansion 
from about 80% for medium scale closed-shell calculations to over 90% for 
open-shell large scale calculations. The percentage of the time used for multi- 
plications, which must be performed independently of the logical structure of the 
algorithm used, changes similarly like the I /O efficiency (60%-85% for cal- 
culations without symmetry). 

The time per one iteration is roughly proportional to the length of the expansion in 
power: 1.6 for closed-shell singlet, 1.35 for the doublet and open-shell singlet, 1.3 
for the triplet case (least-squares fits to the calculations on the same system with 
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different numbers  of virtuals). The dependence on the number  of integrals is 
almost linear. Calculation of diagonal matrix elements and the first iteration take 
no more  than 5% of t ime needed for the last iteration, while the other iterations 
with reduced formulas take about  20% of that time. The timing and storage 
requirements  for calculation of the size presented in Table 3 make them pro- 
hibitive using conventional CI  programs on our computer .  For the direct CI 
program they are of medium-size and quite easy to perform. 

Most of the time during the iteration is spent on actual multiplications. The rest of 
the t ime (15-40%) is used mainly for evaluation of the addresses in the loops. 
Only a very small port ion of the t ime goes for reading the formula vector. In the 
general case of an MC-CI  expansion the formula  vector may be very long, but the 
total number  of individual terms in the loops is lower than in the case of one 
reference state with the same number  of configurations (the H matrix is more  
dense for one reference configuration [19]). Therefore  the high efficiency and 
weak dependence of the t ime on the length of expansion should remain. 

To increase the efficiency even further another  scheme of addressing could be 
used (see preceding part  of this paper).  One may propose  a useful compromise  
between the formula tape approach and the direct CI  method.  All the loops which 
give only one contribution and the loops over  singly occupied orbitals may be 
separated f rom the other loops, and a short formula  tape may be formed for them 
directly f rom the list of integrals. For the remaining loops the number  of elements 
per  one loop, which is already quite high (Table 3), will be much greater,  and the 
processing of the loops more  efficient. 

Obviously there is large number  of other improvements  which could be 
incorporated in future programs.  I t  is clear that the use of the symmetric  group 
allows for deep insight into the structure of Hamil tonian matrix and, thanks to 
that, for a very useful and general approach to the configuration interaction 
method.  
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